Добавить биографию на сайт

Биографии известных людей.
Факты, фото, видео, интересные истории.

Поделиться

Эренфест, Пауль: биография

Эренфест вернулся к этой проблеме в 1911 году в работе «Какие черты гипотезы световых квантов играют существенную роль в теории теплового излучения?» (нем. Welche Zge der Lichtquantenhypothese spielen in der Theorie der Wrmestrahlung eine wesentliche Rolle?). В ней он подверг тщательному анализу условия, которым должна удовлетворять функция распределения энергии по нормальным модам (компонентам) теплового излучения в полости («весовая функция», по терминологии учёного): «красное требование» на больших длинах волн, где должен выполняться закон Рэлея — Джинса, и «фиолетовое требование» на малых длинах волн, позволяющее избежать «ультрафиолетовой катастрофы» (термин, впервые появившийся в данной работе Эренфеста). Применив методы статистической механики непосредственно к нормальным модам излучения, исследователь показал, каким образом можно получить закон смещения Вина. Существенным моментом при этом было взятое из механики положение о сохранении отношения E / ν {\displaystyle E/\nu } (энергии моды к её частоте) при бесконечно медленном (адиабатическом) изменении объёма полости (эти соображения были позже развиты в теории адиабатических инвариантов). Рассмотрев далее общий вид весовой функции, Эренфест пришёл к выводу, что для удовлетворения поставленных условий она должна обладать не только непрерывным, но и дискретным спектром. Таким образом, было дано первое строгое математическое доказательство необходимости введения элемента дискретности для объяснения явлений, охватываемых квантовой теорией. Работа Эренфеста, однако, осталась практически не замеченной, и эта заслуга обычно приписывалась Анри Пуанкаре, пришедшему в начале 1912 года к аналогичным выводам совершенно иным путём.

Один из важных вопросов, затронутых Эренфестом в его статье 1911 года, касался различия между квантовыми гипотезами Планка и Эйнштейна. Статистическая независимость квантов света, лежащая в основе последней гипотезы, приводит лишь к закону излучения Вина (именно из этого закона исходил Эйнштейн в своей знаменитой статье 1905 года). Чтобы получить закон Планка, необходимо ввести дополнительное условие, устраняющее эту независимость. Этот вопрос стал темой небольшой заметки «Упрощённый вывод формулы теории комбинаций, лежащей в основе теории излучения Планка» (англ. Simplied deduction of the formula from the theory of combinations which Planck uses as the basis of his radiation theory), написанной Эренфестом совместно с Хейке Камерлинг-Оннесом в 1914 году. В ней был явным образом сформулирован тезис о различии подходов Эйнштейна и Планка и дано простое доказательство выражения для числа состояний (то есть числа возможных распределений квантов энергии по резонаторам), использованного Планком при выводе его формулы. В этом выводе негласно предполагается, что обмен двух элементов энергии, принадлежащих разным резонаторам, не изменяет состояние системы, то есть элементы энергии неразличимы. Эта проблема была окончательно прояснена лишь после создания квантовой статистики, в которой важное место занимает принцип тождественности частиц.

Адиабатические инварианты в квантовой теории

Адиабатическая гипотеза Эренфеста, первые ростки которой появились ещё в статье 1911 года, сыграла важную роль в развитии квантовой теории, позволив обосновать использовавшиеся там правила квантования. Следующий шаг в этом направлении был сделан Эренфестом в июне 1913 года в «Заметке, касающейся удельной теплоёмкости двухатомных газов» (нем. Bemerkung betreffs der spezischen Wrme zweiatomiger Gase). Годом ранее Арнольд Эйкен (англ. Arnold Eucken) опубликовал результаты своих измерений удельной теплоёмкости водорода, согласно которым при низких температурах водород ведёт себя как одноатомный газ. В начале 1913 года Эйнштейн и Штерн предложили теоретическое объяснение хода кривой удельной теплоёмкости, основанное на использовании введённой Планком концепции «нулевой энергии» (наличие у молекулы некоторой вращательной энергии при абсолютном нуле). Более того, они показали, что с помощью нулевой энергии можно получить формулу Планка, не прибегая к предположению о дискретности каких-либо величин. Поскольку это находилось в противоречии с основным выводом его статьи 1911 года, Эренфест в своей заметке выдвинул альтернативный подход к вычислению удельной теплоёмкости, не обращающийся к спорной концепции нулевой энергии. Его метод основывался на применении стандартной статистической механики к рассмотрению вращений двухатомных молекул (ротаторов) с дополнительным предположением о квантовании вращательной энргии в виде ϵ n = n h ν / 2 {\displaystyle \epsilon _{n}=nh\nu /2} . Последнее предположение означало, что частоты вращения могут принимать не любые, а лишь определённые дискретные значения, а угловой момент вращения может быть равен только целому числу квантов действия h / 2 π {\displaystyle h/2\pi } . Это правило квантования, введённое Эренфестом, было ближе к атомной модели Нильса Бора, появившейся чуть позже в том же году и также содержавшей ограничения на частоты, чем к исходной квантовой гипотезе Планка, в которой частота считалась постоянной характеристикой осциллятора. Вычисленная таким образом удельная теплоёмкость хорошо согласовалась с данными Эйкена при низких температурах, хотя при более высоких температурах теоретические кривые демонстрировали серьёзные отклонения от экспериментальных значений. Осенью 1913 года Эйнштейн признал неудовлетворительность аргументации в его совместной со Штерном статье.

КОММЕНТАРИИ
Написать комментарий

НАШИ ЛЮДИ