Добавить биографию на сайт

Биографии известных людей.
Факты, фото, видео, интересные истории.

Поделиться

Нётер, Эмми: биография

Первый период (1908—1919)

Теория алгебраических инвариантов

Большая часть работы Эмми Нётер в первый период её научной карьеры была связана с теорией инвариантов, главным образом с теорией алгебраических инвариантов. Теория инвариантов изучает выражения, которые остаются неизменными (инвариантными) относительно некоторой группы преобразований. Пример из повседневной жизни: если вращать металлическую линейку, то координаты её концов (x1, y1, z1) и (x2, y2, z2) изменяются, но длина, определяемая по формуле L2 = x2 + y2 + z2, остаётся неизменной. Теория инвариантов была активной областью исследований в конце XIX века, толчком к чему послужило выступление Феликса Клейна, так называемая Эрлангенская программа, в соответствии с которой различные геометрии должны характеризоваться существующими в них инвариантами преобразований, например, такими как двойное отношение в проективной геометрии. Классическим примером инварианта является дискриминант B2 4AC бинарной квадратичной формы Ax2 + Bxy + Cy2. Дискриминант называется инвариантом, потому что он не меняется при линейных подстановках xax + by , ycx + dy с определителем ad bc = 1. Эти подстановки образуют специальную линейную группу SL2. Более общо, можно рассматривать инварианты однородных многочленов A0xry0 + … + Arx0yr более высокой степени, являющиеся многочленами от коэффициентами A0, …, Ar. И ещё более общо, можно рассматривать однородные многочлены с более чем двумя переменными.

Одна из главных задач теории алгебраических инвариантов состояла в том, чтобы решить «проблему конечного базиса». Сумма или произведение любых двух инвариантов — это инвариант, и в проблеме конечного базиса спрашивается, можно ли получить все инварианты, начиная с конечного списка инвариантов, называемых генераторами, при помощи применения к ним операций сложения и умножения. Например, дискриминант даёт конечный (состоящий из одного элемента) базис инвариантов бинарных квадратичных форм. Пауль Гордан, научный руководитель Нётер, был известен как «король теории инвариантов», и его главный вклад в математику заключался в решении проблемы конечного базиса для инвариантов однородных многочленов от двух переменных. Он доказал это, предложив конструктивный способ нахождения всех инвариантов и их генераторов, но он не мог использовать этот подход для инвариантов с тремя или более переменными. В 1890 году Давид Гильберт доказал похожее утверждение для инвариантов однородных многочленов от любого числа переменных. Кроме того, его метод работал не только для специальной линейной группы, но и для некоторых её подгрупп, таких как специальная ортогональная группа. Его первое доказательство не давало никакого способа построения генераторов, но в более поздних работах он сделал свой метод более конструктивным. В своей диссертации Нетёр распространила вычислительное доказательство Гордана на однородные многочлены от трёх и более переменных. Конструктивный подход Нетёр позволил изучать соотношения между инвариантами. Впоследствии, когда она обратилась к более абстрактным методам, Нётер называла свою диссертацию Mist («хлам») и Formelngestrpp («джунгли из уравнений»).

Теория Галуа

Теория Галуа изучает преобразования числовых полей, которые переставляют корни некоторого уравнения. Рассмотрим многочлен от переменной x степени n, коэффициенты которого принадлежат некоторому основному полю — например, полю вещественных чисел, рациональных чисел или вычетов по модулю 7. Может существовать значение переменной х из этого поля, которое обращает многочлен в ноль. Такие значения, если они существуют, называются корнями. Например, многочлен x2 + 1 не имеет корней в поле действительных чисел, потому что любое значение x делает многочлен большим или равным единице. Однако, если поле расширяется, то любой многочлен может начать иметь корни, и если поле расширено достаточно, то он будет иметь n корней. Продолжая предыдущий пример, если поле будет расширено до комплексных чисел, то многочлен приобретёт два корня, i и i, где i — мнимая единица, то есть, i 2 = 1.

Группа Галуа многочлена — это совокупность всех преобразований его поля разложения, сохраняющих основное поле. Группа Галуа многочлена x2 + 1 состоит из двух элементов: тождественного отображения, которое переводит каждое комплексное число в себя, и комплексного сопряжения, которое переводит i в i. Так как группа Галуа сохраняет основное поле, коэффициенты многочлена остаются без измеений, поэтому и множество его корней не изменяется. Однако корень этого многочлена может перейти в другой его корень, поэтому преобразование определяет перестановку n корней между собой. Значимость группы Галуа вытекает из основной теоремы теории Галуа, которая говорит, что поля, лежащие между основным полем и полем разложения, находятся во взаимно-однозначном соответствии с подгруппами группы Галуа.

КОММЕНТАРИИ
Написать комментарий

НАШИ ЛЮДИ